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Abstract

This research effort seeks to characterize a vision-aided approach for an Un-

manned Aerial System (UAS) to autonomously determine relative position to another

aircraft in a formation, specifically to address the autonomous aerial refueling prob-

lem. A system consisting of a monocular digital camera coupled with inertial sensors

onboard the UAS is analyzed for feasibility of using this vision-aided approach.

A three-dimensional rendering of the tanker aircraft is used to generate predicted

images of the tanker as seen by the receiver aircraft. A rigorous error model is

developed to model the relative dynamics between an INS-equipped receiver and the

tanker aircraft. A thorough image processing analysis is performed to determine error

observability between the predicted and true images using sum-squared difference and

gradient techniques. To quantify the errors between the predicted and true images,

an image update function is developed using perturbation techniques. Based on this

residual measurement and the inertial/dynamics propagation, an Extended Kalman

Filter (EKF) is used to predict the relative position and orientation of the tanker

from the receiver aircraft.

The EKF is simulated through various formation positions during typical aerial

refueling operations. Various grades of inertial sensors are simulated during different

trajectories to analyze the system’s ability to accurately and robustly track the relative

position between the two aircraft.
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Using Predictive Rendering as a Vision-Aided Technique

for Autonomous Aerial Refueling

I. Introduction

The advent of unmanned aerial systems (UAS) has revolutionized the way the

United States Air Force (USAF) conducts operations. No longer are aerial

platforms limited by human endurance, but rather the endurance of the aircraft itself.

This limiting factor can be even further reduced with the use of automated in-flight

UAS refueling. The first unmanned systems (RQ-4 Global Hawk and MQ-1 Predator)

were used exclusively for reconnaissance and could loiter over a target for extreme

lengths of time. The Predator soon transitioned into an armed reconnaissance role.

Today’s systems have evolved even further into hunter/killer systems such as the MQ-

4 Reaper. One can easily see this trend will develop unmanned systems into a more

complex, larger component of the battlefield in the years to come [12].

With the imminent arrival of Unmanned Combat Aerial Systems (UCAS), the

need for tactical refueling will be vital for mission success. Designed for high perfor-

mance and larger, more complicated weapon payloads, these systems will have both

shorter range and loiter time than the current unmanned systems fielded today. These

systems will likely be a critical component of the tactical battlefield, and comman-

ders will require them to perform missions that are currently dominated by manned

systems. Thus, the need for a robust, autonomous refueling technique is vital for

force projection of unmanned systems and overall mission success in future USAF

operations [2, 8, 12].

Many efforts have already shown success in solving this problem (articulated in

detail in Chapter II), primarily using Global Positioning System (GPS) approaches [8,

13]. With GPS, possible satellite acquisition issues exist for the receiver aircraft due

to the tanker blocking large areas of the sky above it [9]. Furthermore, relying on
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GPS solutions in every combat environment could be detrimental when GPS denial

and degradation exist due to jamming or sensor failure. The Air Force Research

Laboratory’s (AFRL) Automated Aerial Refueling (AAR) Program has an interest

in determining how well an autonomous system can function in environments where

GPS is either degraded or denied [20]. This research will directly help analyze this

specific area of the AAR program.

1.1 Methods of Aerial Refueling

There are two standard methods for in-flight refueling operations. The first,

employed by the United States Navy and Marine Corps, is known as the probe and

drogue technique. For this method, the refueling aircraft has a refueling probe that

makes contact with a drogue chute on a refueling hose that trails from the tanker

aircraft. Figure 1.1 shows a Marine Corps F/A-18 Hornet receiving fuel from an Air

Force KC-10 Extender.

The second major method of aerial refueling is the flying boom method used by

the USAF. For this approach, the receiving aircraft maintains a formation position

just below the tail of the tanker aircraft, and the boom operator onboard the tanker

inserts the refueling boom into the refueling receptacle of the receiver. Figure 1.2

displays this technique.

Figure 1.1: An F/A-18 Hornet receiving fuel from a KC-10
Extender using the probe and drogue aerial refueling method

2



Figure 1.2: An F-22 Raptor receiving fuel from a KC-135
Stratotanker using the aerial boom refueling method

1.2 Research Objectives

By applying an image processing algorithm to images received from a monocular

camera, this research will investigate if the receiver aircraft can accurately determine

the relative attitude and range to the lead tanker aircraft. Fusing this image data with

the onboard Inertial Navigation System (INS) data will provide a robust navigation

technique for autonomous UAS formation flight that could potentially be independent

of external sources such as GPS. The ultimate goal will be validating a robust, vision-

aided technique for accurate relative positioning between the tanker and receiver

aircraft.

1.3 Scope

This research will focus on achieving accurate relative position of a receiver

aircraft to a KC-135R Stratotanker. As aforementioned, the baseline system will

have a monocular camera as well as data from an on-board INS. The receiver aircraft

is assumed to start in a position behind and below the tanker, using the boom method

of aerial refuelng. This will ensure the images are free from unwanted objects such

3



as ground clutter and other aircraft. This research will analyze potential differences

in INS quality and consider various image-processing techniques to develop a robust,

accurate approach.

1.4 Overview

This thesis will be organized as follows. Chapter II will highlight key math-

ematical background to include applicable coordinate systems used in the relative

navigation algorithm as well as transformation techniques between them. Kalman

filtering will be discussed in detail, to include the basic Kalman Filter as well as the

specific implementation used in this research, the Extended Kalman Filter (EKF).

Then, fundamentals of an INS will be discussed as well as example mechanization

equations. Also, some fundamental concepts of imaging sensors are presented. The

chapter concludes by analyzing previous work concerning the autonomous aerial refu-

eling problem, and how this research seeks to complement those previous efforts and

exploit any lessons learned.

Chapter III presents the development of a predictive rendering environment to

generate predicted images of the tanker aircraft as seen by the receiver. Several image-

processing techniques (sum-squared difference, magnitude of gradient, and magnitude

of gradient with threshold) are analyzed to determine their suitability for detecting

errors between the true and predicted images. A relative dynamics model is developed

to simulate the wing and lead aircraft flight characteristics during the refueling oper-

ation. A discussion of the EKF implementation, including the use of image updates,

concludes the chapter.

Chapter IV analyzes the results of various simulations using the filter described

in Chapter III. Several trajectories are analyzed with the receiver and tanker aircraft

in different positions of typical refueling formations (e.g., pre-contact and contact).

A presentation of filter performance with various grades of inertial sensors and initial

errors is also presented based on the simulation results.

4



Finally, Chapter V will highlight the overall conclusions of the image-aided

filter for autonomous refueling, analyzing the overall performance of the technique.

An overall analysis of the research accomplishments and recommendations for future

research conclude the chapter.

5



II. Mathematical Background and Previous Research

This chapter describes the key mathematical and technical background infor-

mation necessary to understand the algorithm development of Chapter III.

These key concepts are highlighted in the beginning sections of this chapter and

include: Kalman filtering, coordinate systems and transformations, INS description

and mechanization, optical sensors, and image processing. The last section of the

chapter highlights the current state of autonomous aerial refueling research.

2.1 General Mathematical Notation

Before developing mathematical equations, a brief description of the general no-

tation is in order. For this document, scalar quantities will be identified by lower-case

variables (e.g., x). Vector quantities will be identified by bold, lower-case variables

(e.g., x), and matrices will be identified by bold, upper-case variables (e.g., X).

2.2 Kalman Filtering

The Kalman Filter is an optimal estimation technique frequently employed in

navigation systems that uses statistical techniques to estimate the navigation state.

There are many varieties of this technique, but the two discussed here are the tra-

ditional Kalman Filter and the Extended Kalman Filter. Before constructing this

optimal estimator, a mathematical model must be constructed to approximate the

dynamics of the system. Using a state-space format, the state vector of interest, x,

changes over time by the following expression

ẋ(t) = F(t)x(t) + B(t)u(t) + G(t)w(t) (2.1)

where F(t) is the state dynamics matrix, B(t) is the input matrix, u(t) is the vector

of deterministic inputs, G(t) is the noise distribution matrix, and w(t) is the noise

vector. The values in the noise vector are typically assumed to be white, Gaussian

noise (WGN) sources. Similarly, discrete-time measurements are used to update the

6



filter and are typically of the form:

z(tk) = H(tk)x(tk) + v(tk) (2.2)

where z(tk) are the discrete time measurements, H(tk) is the measurement observ-

ability matrix, and v(tk) is the discretized measurement noise vector.

2.2.1 Traditional Kalman Filter. Now, with a stochastic model of the sys-

tem, the traditional Kalman Filter can be constructed. This estimator tracks a state

estimate (x̂) and a state error covariance (P) through an alternating series of time-

propagation and measurement updates. These and other variables used in the filter

will often have a subscript and superscript notation. The subscript notation indicates

at which time epoch the variable is evaluated. The superscript indicates whether

this is immediately before or after a measurement update occurs. For example, the

notation of P−
k indicates the a priori state error covariance estimate just before a

measurement is taken at some time epoch k. The notation of P+
k indicates the a

posteriori state error covariance estimate just after a measurement is taken at some

time epoch k.

To construct the filter, the first step is to write the discrete-time stochastic

difference equation from the continuous time model shown above. Before writing this

equation directly, there are a few specific calculations that must be made. The needed

values are Bk, Φ(∆t), and Qk. Bk is the discretized version of the input matrix B(t),

Φ(∆t) is the discrete time state transition matrix over the specific time interval, and

Qk is the discretized process noise. These matrices are calculated as follows [11]:

Bk =

∫ tk+1

tk

Φ(tk+1 − τ)Bu(τ)dτ (2.3)

where:

Φ(∆t) = eF∆t (2.4)
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Qk is solved using the Van Loan calculation, which is performed as follows:

A∗ =


 −F GQGT

0 FT


 (2.5)

B∗ = eA∗ =


 · · · Φ−1Qk

0 ΦT


 =


 B11 B12

B21 B22


 (2.6)

Qk = BT
22B12 (2.7)

Now, the stochastic difference equation can be formed as seen in Equation 2.8:

xk+1 = Φkxk + Bkuk + wk (2.8)

Now all the necessary elements exist to write the equations for executing the Kalman

filter. The first function of the Kalman filter, time propagation, is accomplished with

the following two calculations for each time step [11]:

x̂−k = Φk−1x̂
+
k−1 + Bk−1uk−1 (2.9)

P−
k = Φk−1P

+
k−1Φ

T
k−1 + Qk−1 (2.10)

Then, at each time epoch k where a measurement is available, the following measure-

ment update calculations are made:

Kk = P−
k HT

k [HkP
−
k HT

k + Rk]
−1 (2.11)

x̂+
k = x̂−k + Kk(zk −Hkx̂

−
k ) (2.12)

P+
k = P−

k −KkHkP
−
k (2.13)

The matrix Kk is known as the Kalman gain and the matrix Rk is the measurement

uncertainty. This calculation process is repeated for the duration of filter execu-

tion [11].
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2.2.2 Extended Kalman Filter. In many system models, the system dy-

namics and/or measurements are nonlinear functions, and cannot be simply written

in terms of matrix multiplications as seen in Equations 2.1 and 2.2. The nonlinear

dynamics and measurements are typically written in the following form [10]:

ẋ(t) = f [x(t),u(t), t] + G(t)w(t) (2.14)

z(ti) = h [x(ti)] + v(ti) (2.15)

The Extended Kalman Filter (EKF) is one mechanism to account for these nonlinear

effects. The EKF is an iterative algorithm where the filter is relinearized about each

state estimate, x̂(t+i ), once it is computed. This results in creating a new, updated

state trajectory in order to better estimate the next time propagation. This process

should minimize the difference between the nominal and true trajectories, and hence

improve the overall model [10].

In the general case, at a time ti, immediately after a measurement is incor-

porated and a relinearization about the new state estimate is calculated, the best

estimate of δx(ti) is δx̂(t+i ) = 0. This is due to the relinearization just accomplished

about the best state estimate [10]. Since the current estimate is zero, propagating it to

the next sample time ti+1 will also yield zero. Using this knowledge, the measurement

update for the relinearized filter is:

δx̂(t+i+1) = K(ti+1)(zi+1 − h[xn(ti+1/ti), ti+1]) (2.16)

The notation xn(ti+1/ti) is used to define the nominal state over the interval ti to ti+1.

Now to find the optimal estimate of the full state x̂(t/ti), simply combine the

nominal with the perturbation estimate [10]:

x̂(t/ti) = xn(t/ti) + δx̂(t/ti) (2.17)
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The equations that follow in this section form the iterative algorithm for executing

the EKF. With the given dynamics model in the previous section, the measurement

update step at time ti incorporates the current measurement, zi, through the follow-

ing [10]:

K(ti) = P(t−i )HT [ti; x̂(t−i )](H[ti; x̂(t−i )]P(t−i )HT [ti; x̂(t−i )] + R(ti))
−1 (2.18)

x̂(t+i ) = x̂(t−i ) + K(ti)(zi − h[x̂(t−i ), ti]) (2.19)

P(t+i ) = P(t−i )−K(ti)H[ti; x̂(t−i )]P(t−i ) (2.20)

where H[ti; x̂(t−i )] is defined as the partial derivative matrix [10]:

H[ti; x̂(t−i )] =
∂h[x, ti]

∂x

∣∣∣∣∣
x=x̂(t−i )

(2.21)

The estimate is propagated to the next sample time ti+1 by integrating the following

differential equations:

˙̂x(t/ti) = f [x̂(t/ti),u(t), t] (2.22)

Ṗ(t/ti) = F[t; x̂(t/ti)]P(t/ti) + P(t/ti)F
T [t; x̂(t/ti)] + G(t)Q(t)GT (t) (2.23)

The initial conditions for these integrations are based on the measurement update

values in Equations 2.19 and 2.20.

x̂(ti/ti) = x̂(t+i ) (2.24)

P(ti/ti) = P(t+i ) (2.25)

The matrix F[t; x̂(t/ti)] from Equation 2.23 is defined as [10]:

F[t; x̂(t/ti)] =
∂f [x,u(t), t]

∂x

∣∣∣∣∣
x=x̂(t/ti)

(2.26)
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The linear stochastic difference equations can then be written in the form:

δx(ti+1) = Φ(ti+1, ti)δx(ti) + wd(ti) (2.27)

P(ti)
− = Φ(ti+1, ti)P(ti)Φ

T (ti+1, ti) + Qd(ti) (2.28)

After propagating to the next sample time, the new values are defined as:

x̂(t−i+1) = x̂(ti+1/ti) (2.29)

P(t−i+1) = P(ti+1/ti) (2.30)

These propagate and update steps are iterated throughout the execution of the

EKF [10].

2.3 Reference Frames

Before delving into the details of inertial navigation systems, one must first

understand the reference frame about which navigation systems operate and define

position. This research will primarily utilize frames presented in [17]. All are orthog-

onal and follow the right-hand convention, and are defined in the paragraphs that

follow. A graphical representation from [17] is shown in Figure 2.1.

The inertial frame (I-frame) has fixed axes that do not rotate in space in relation

to the fixed stars. This frame is where Newton’s laws of motion are valid.

The Earth-fixed inertial frame (i-frame) has origin at the center of the Earth

with the z axis aligned with the axis of rotation, and x and y axes in the equatorial

plane. The axes do not rotate in relation to the fixed stars.

The Earth-centered Earth-fixed frame (e-frame) also has origin at the center of

the Earth. The z axis is aligned with the axis of rotation, but the x is aligned with

the intersection of the equatorial plane and the prime meridian (Greenwich). The

11



Figure 2.1: Diagram of Navigation Reference Frames [17]

y axis is orthogonal based on the right-hand convention. The e-frame rotates with

respect to the inertial frame.

The navigation frame (n-frame) has its origin at the location of the inertial

navigation system (INS) or a fixed point on the surface of the Earth. The x and y

axes are parallel to the surface of the Earth (aligned with North and East respectively),

and the z axis points in the direction of local gravity (down). This is the North-East-

Down (NED) convention.

The body frame (b-frame) has its origin at the center of mass of a vehicle.

The x, y, and z axes are aligned with the roll (φ), pitch (θ), and yaw (ψ) axes,

respectively. The three possible translations about the body axes (x, y, and z) and

the three rotations (roll, pitch, and yaw) are the six degrees of freedom for the aircraft.

Figure 2.2 illustrates a typical aircraft b-frame. Since this research will concern two

aircraft flying in formation, the body frames of each will be designated based on their

formation position. Coordinates relative to the lead aircraft (tanker) body frame will

be denoted with an L (e.g., pL). Coordinates relative to the wing aircraft (receiver)

body frame will be denoted with a W (e.g., pW ).
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Figure 2.2: Example aircraft body frame illustration

2.4 Coordinate Transformations

With the large number of available reference frames, a vector will often need

to be resolved from one frame into another frame. This brings rise to the coordinate

transformation, which is often accomplished by use of the direction cosine matrix

(DCM). The DCM from frame a to frame b is denoted by Cb
a. As shown in [17], this

3× 3 matrix is the product of every unit basis vector in frame a with every unit basis

vector in frame b. Each element in the DCM, Cij, is the cosine of the angle between

the i axis in the b frame with the j axis in the a frame.

A vector in basis b can easily be calculated by pre-multiplying the vector of

basis a by the DCM as shown below:

rb = Cb
ar

a (2.31)
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2.5 WGS-84 Reference System

The Earth is a highly irregular body and various methods have been employed to

model the Earth’s shape. Though similar to a sphere, the Earth bulges at the equator

and is more flattened at the poles. For precise navigation, modeling the Earth as a

sphere leads to errors. The ellipsoid has been adopted as the most common datum

to model the Earth’s shape. A geodetic datum defines a three dimensional (3D)

coordinate system to identify a specific location in terrestrial space. These dimensions

consist of geodetic latitude and longitude and height (above the ellipsoid) [17].

In [1], The World Geodetic System Committee created a datum which approx-

imates the shape of the Earth over the entire globe. Created in 1984, this datum is

known as WGS-84. For mapping, charting, geopositioning, and navigation, WGS-84

is the most widely used global geodetic reference. With the origin at the center of

the Earth, the z axis aligns with the axis of rotation and the x and y axes align with

the equatorial plane. This is coincident with the e-frame described in the previous

section. The x axis points toward the Zero Meridian, with the y axis orthogonal

to it. From Figure 2.1, longitude (l) is the angle between the local meridian plane

and the Greenwich meridian. Latitude (L) is the angle, in the local meridian plane,

between the local navigation axes and the Equator. The mathematical model which

approximates the shape of the Earth is known as the ellipsoid. Position coordinates

in the WGS-84 reference frame are given in latitude, longitude, and height above the

ellipsoid (HAE).

2.6 Inertial Navigation Systems

This section describes the basic aspects of an inertial navigation system (INS).

From [21], an INS is composed of accelerometers and gyroscopes to sense motion,

as well as a computer. With an initial set of conditions provided by the user, the

INS is able to determine motion and relative position based on integrations of the

raw measurements from the devices. These raw measurements are used to determine

change in velocity, change in attitude, and change in geographic position.
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2.6.1 Basic Functions of Components. INS systems are standalone, meaning

they do not require input from any outside source. Based on knowledge of initial

conditions, the system is able to track changes in velocity and position without the

aid of an external reference. There are two different physical configurations for most

INS instruments, gimbaled and strapdown. Gimbaled instruments are mounted to a

platform that is connected to gimbals, which allow the platform to stay in a fixed

orientation independent of the attitude of the vehicle. Based on inputs from the

sensors, torque motors rotate the platform to counteract any motion by the vehicle.

These systems are highly accurate, though they require a high-level of maintenance

due to complex moving parts. Strapdown systems, just as the name suggests, are fixed

to the body frame of the vehicle. Typically, one gyroscope and one accelerometer

are aligned with each axis to measure each axis of rotation and each translational

acceleration. Velocity and position are calculated by integrating the raw data from

the gyroscopes and accelerometers [21].

Gyroscopes are able to accurately measure the rotational accelerations of the

vehicle body with respect to inertial space. Accelerometers, however, measure specific

force, which is the sum of gravity and the acceleration of the vehicle with respect to

inertial space. Thus, they are unable to separate the ever-present effects of gravity.

Hence, an INS computer must subtract the local gravitational field intensity to resolve

true acceleration relative to inertial space [17].

The effect of the Earth’s rotation must also be accounted for in INS position

calculations. The Coriolis equations factor in the effects of the rotating Earth on the

moving vehicle. Though not discussed in detail here, they are an important factor for

INS design [17].

2.6.2 Mechanization. Now that the main components of the INS section are

introduced, the mechanization for the INS can be discussed.

As discussed in [6], the INS navigation equations are used to describe how

the position, velocity, and attitude are updated over time. Using the angular rate
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measurement, ωb
ib, the attitude solution is updated in the body to Earth-frame DCM,

Ce
b, through the following calculation

Ċe
b = Ce

bΩ
b
eb

= Ce
bΩ

b
ib −Ωe

ieC
e
b

(2.32)

The terms Ωe
ie and Ωb

ib are the skew symmetric matrices of the Earth-rotation vector

and the IMU’s angular-rate measurement, respectively.

To update velocity, one must note that the centrifugal and Coriolis components

must be included to account for the rotation of the Earth-frame axes with respect to

inertial space. The velocity update is computed as:

v̇e
eb = −Ωe

ieΩ
e
iep

e
eb − 2Ωe

iev
e
eb + ae

ib (2.33)

The acceleration, ae
ib, is the sum of both the measured specific force (f e

ib) and the

gravitational force (γe
ib). Also, one can define the term, ge

b , as the sum of the centrifugal

and gravitational accelerations:

ge
b = γe

ib −Ωe
ieΩ

e
iep

e
eb (2.34)

Thus, making these two substitutions to Equation 2.33 yields:

v̇e
eb = f e

ib + ge
b(p

e
eb)− 2Ωe

iev
e
eb (2.35)

The position change is simply equal to the velocity:

ṗe
eb = ve

eb (2.36)
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2.7 Optical Sensors

This section describes some fundamental concepts regarding camera models. For

this research, a pinhole camera model was assumed for the digital camera onboard

the wing (receiver) aircraft. This is consistent with the flight data used for image

processing analysis, which will be discussed in detail in Chapters III and IV.

Figure 2.3 shows a typical pinhole camera model. The image plane is projected

one focal length (f) in front of the lens. As shown in the figure, the coordinate

frame for the camera is right-handed, with the x and y axes pointing down and

right, respectively. The z axis points perpendicular to the camera lens. For this

research, there is no need to track specific pixels in any images (i.e., the location of

the projection on the image plane).

Figure 2.3: Simple Camera Projection Model. The virtual
image plane is placed in between the focal point and the scene,
thus the image is not inverted as typical in optical models.
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2.8 Image Processing Techniques

During a refueling operation, the digital camera onboard the UAS will take

periodic images of the tanker aircraft. The relative navigation system will generate

predicted images of the tanker based on the current state estimate and covariance.

These predicted images will be compared to the measured image, to provide a virtual

measurement as feedback to the system. More details of how the system creates a

predicted image will be discussed in Section 2.9

For analyzing image processing techniques, two specific formation positions were

examined: the pre-contact and contact positions. At the pre-contact position, the re-

ceiver aircraft is approximately 50 feet behind and 10 feet below the tip of the refueling

boom. In the contact position, the receiver aircraft is positioned just below the fixed

boom, with its refueling receptacle directly in line with the boom extension. This

is the optimal refueling location. Figure 2.4 presents all typical formation positions

during aerial refueling.

Figure 2.4: Diagram of typical formation positions during
aerial refueling. This research will focus on the pre-contact and
contact positions [3].
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Figure 2.5 shows example infrared images from the receiver camera perspective

while in the pre-contact and contact positions. The relative positioning accuracy

while the receiver aircraft is in pre-contact, contact, and transitioning between these

two points is absolutely critical. Due to the close proximity of the two aircraft dur-

ing this portion of the refueling operation, any positioning errors could be a safety

hazard. Thus, these are optimal positions to evaluate the accuracy of an image-aided

algorithm. The simulations presented in Chapter IV will focus on these formation

positions.

The key goal for image processing in this research is to determine some type of

metric between the predicted and true images. The system must have some way to

determine if there are errors between the two images, and how large those errors are.

Exactly how the system uses these errors as measurement updates will be discussed

in Section 3.2.2. Three image comparison metrics are considered in this research:

a sum-squared difference of intensity, a magnitude of gradient comparison, and a

gradient with threshold technique. These approaches attempt to quantify the error

between a given predicted image and the truth image. Each approach is described in

the paragraphs that follow.

(a) (b)

Figure 2.5: (a) Example infrared image of the tanker as seen
from the receiver at the pre-contact position.
(b) Example infrared image of the tanker as seen from the re-
ceiver at the contact position
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2.8.1 Sum Squared Difference. The two images are first converted to

grayscale and the respective image intensities are normalized. This normalization

is computed by first subtracting the mean image value (I) from each pixel, then di-

viding by the standard deviation (σ) of the pixel intensities. For a given image, I, the

normalization calculation is shown in Equation 2.37.

Inorm =
I− I

σI

(2.37)

In order to avoid aliasing effects, the image is passed through a filter that applies a

Gaussian blur to smooth the edges of the aircraft. This Gaussian blur (mean = 0,

σ = 1 pixel) will be applied during all image-processing techniques.

Now, to find the sum-squared difference, c, between an image I and another

image N (each with n pixels), the following expression is calculated:

c =
n∑

i=1

(Ii −Ni)
2 (2.38)

Conceptually, the sum-squared difference approach simply compares the differ-

ences in intensity between the pixels in one image with the corresponding pixels in

another image. This technique would work well when there is a distinct contrast in

intensity between the aircraft portion of the image and the background portion of the

image. This is indeed true in the case of infrared imaging and the images generated

by predictive rendering (Section 2.9).

2.8.2 Magnitude of Gradient. A second approach considered for image

correlation is to convert the images to gradient space. A gradient is a mathemati-

cal calculation to determine the change in image intensity between adjacent pixels.

Areas containing a sudden change in pixel intensity indicate edges or corners. In

this research, these typically exist at the edges of the tanker aircraft in the image.

Applying a special image processing filter in Matlabr known as the Prewitt filter
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(Equation 2.39) to the image, one can determine the horizontal gradient matrix (Gx)

for the image.

Fprewitt =




−1 0 1

−1 0 1

−1 0 1


 (2.39)

Simply taking the transpose of this filter will yield the gradient matrix for the vertical

direction (Gy). The overall gradient magnitude matrix in the image is calculated as:

Gmag = G2
x + G2

y (2.40)

This magnitude is then normalized across the image, similar to the calculation above

for sum-squared difference.

Gnorm =
Gmag −Gmag

σGmag

(2.41)

2.8.3 Magnitude of Gradient with Threshold. As a third approach, the

same magnitude of gradient is computed for each image, but the magnitudes are

then filtered based on a threshold technique. Through experimentation, a threshold

is found that will amplify strong areas of gradient magnitude. Each pixel in the

image is compared to the threshold value and is set to a value of zero if below the

threshold, or set to a value of one if above the threshold. This will remove the few

small, unwanted edges (any background clutter or small features on the surface of the

aircraft), as well as amplify the desired edges of the aircraft outline. A sample image

(after implementing a threshold) is shown in Figure 2.6.
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Figure 2.6: Example image after applying magnitude of gra-
dient with threshold. The threshold on the gradient amplifies
the edges of the tanker while removing any unwanted gradient
due to background clutter or lens reflection.

2.9 Predictive Rendering Algorithm

2.9.1 Motivation. The basic premise of vision-aided navigation is to extract

as much information as possible from digital images. In this research application,

the relative distance and attitude between the two aircraft must be determined based

on images taken from the wing aircraft imaging sensor. In order to extract this

information, there must be some initial prediction of what the image should look like.

As discussed in the previous section, an image processing algorithm will compare

a predicted image with the truth image in order to provide feedback to the filter.

Without a prediction for comparison, the truth image alone does not reveal any

specific metric of relative distance and attitude.

The predictive rendering algorithm generates a predicted image using a three-

dimensional structural model of the lead aircraft combined with an a priori estimate

of the relative pose between the imaging sensor and the lead aircraft.
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Many image-aided navigation techniques for aerial refueling focus on predicting

and tracking specific features (edges or corners) on the tanker aircraft. This can be a

computational burden on the system because of the required processing to track and

associate multiple features throughout the filter execution. Furthermore, there is the

possibility of misassociating a detected feature with an incorrect predicted feature.

If the pose or range estimate is significantly wrong, the portion (or window) of the

image where the filter predicts a specific feature could potentially contain a different

feature of the aircraft. This can lead to even larger errors in the relative navigation

solution if the feature detection algorithm associates the wrong detected feature with

a predicted feature. In other words, potential errors exist with predicting a certain

feature in a small window of the image and finding the wrong feature. Similarly,

predicting a feature in a specific portion of the image and detecting no features also

leads to errors [15].

In order to simplify this problem, the predictive rendering approach seeks to

generate the entire image of the tanker and compare it with the entire image taken

from a digital camera using image-processing techniques. This eliminates the need

to track specific features on the aircraft and also eliminates the possibility of feature

misassociations. Additionally, this technique does not require modification of the

tracking processes when certain features of the tanker are no longer visible to the

camera. For example, when transitioning from the pre-contact to the contact position,

the outer extremities of the lead aircraft (i.e., wingtips and tail section) slowly move

out of the camera’s field of view. A feature detection algorithm would have to discard

these features as they moved out of the image and rely on new features (if they exist

and are detectable). Images of the tanker taken during these two formation positions

are shown in Figure 2.5, presented earlier in this chapter.

Additionally, the predictive rendering technique will give the relative navigation

algorithm a modular design. The fundamental algorithm will stay the same regardless

of which lead aircraft the wing aircraft is following in the formation. A 3D model

of a different tanker aircraft (e.g. KC-10 Extender) could be substituted in for the
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KC-135R, and the relative navigation solution would function the same. Furthermore,

as long as a 3D model is available, virtually any aircraft could be used as the lead

aircraft for other applications of autonomous formation flight.

2.9.2 Implementation. In this research, the rendering algorithm was imple-

mented in Matlabr using the Virtual Reality (VR) Toolbox and a three dimensional

model of the KC-135R Stratotanker. The VR toolbox uses OpenGL to render scenes

of interest. The VR environment simply needs a translation vector and rotation vec-

tor to adjust the location of the 3D model within the window. This approach was

used due to the ease with which Matlabr simulations could be developed that can

directly interface with the rendering tool. Though the VR toolbox cannot render at

a frame rate as high as more powerful, commercial rendering tools, it has adequate

performance to prove the concept of this research. It is not an adequate approach for

real-time operation. For example, if the system captured a truth image at a rate of

1 Hz, the rendering tool would be required to generate many predicted images at a

very high frame rate. These images would then have to be processed and used for an

update to the filter, all in enough time for the system to receive another image update

one second later. More on this update process will be discussed in Section 3.2.2.

The relative pose of the lead aircraft is defined as the position and orientation of

the lead body frame relative to the camera frame on the wing aircraft. This position

and orientation is calculated by:

sc = Cc
W

[
CW

n Cn
e (pe

L − pe
W )− pW

c

]
(2.42)

Cc
L = Cc

WCW
n Cn

L (2.43)

These relative position and orientation parameters are then provided to the

predictive rendering algorithm. The VR tool then generates a 3D rendering of the

predicted image for any desired translation and rotation. A sample rendering is shown

in Figure 2.7.
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Figure 2.7: Sample 3D Rendering of Tanker Aircraft.
Matlabr Virtual Reality environment renders a predicted image
of the lead tanker from the perspective of the receiver aircraft.

The simulation environment was validated using data collected during flight

tests by the Northrop Grumman Corporation. These data sets included time-space

positioning information (TSPI) data for both the receiver and tanker aircraft, as well

as infrared imaging from a camera mounted inside the nosecone of the receiver. The

camera was mounted with a pitch angle of +28o in order to keep the tanker in its

field of view while the receiver aircraft was below the tanker in the contact position.

The specific type of imaging sensor used was Long Wave Infrared (LWIR). This type

was chosen during these data collection flights due to the ease of locating the tanker

aircraft in the infrared image in all lighting and weather conditions [3]. An image of

the camera mounted in the nose of the receiver aircraft is shown in Figure 2.8.

A sample predicted image from the simulation is shown in Figure 2.9. Here,

the predicted location of the tanker (with an intentional error for easier distinction)

is rendered in the same figure as the true infrared image of the tanker. The predicted

and measured images must be compared in order to determine the accuracy of the

a priori state estimate. This comparison metric is generally termed as the residual

between predicted and measured values and is described in Section 3.2.2.
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Figure 2.8: Orientation of the LWIR Camera when mounted
in the nose of the receiver aircraft during data collection flights.
The camera has a pitch angle of +280.

Figure 2.9: Rendered Image Prediction (Semi-Transparent)
with True Infrared Image. A semi-transparent rendering of the
predicted tanker location is superimposed on an actual infrared
image from the receiver camera.
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2.10 Previous Research Efforts

This section highlights previous work done regarding autonomous aerial refuel-

ing, including all significant approaches (GPS, vision-aided, etc.) to date.

2.10.1 Ross/Spinelli Formation Flight Controller. The goal of the Ross and

Spinelli research was to develop a system that would demonstrate fully-autonomous

formation flight and accurate relative position to a lead tanker aircraft. This involved

maintaining proper position through all major formations associated with inflight

refueling (wing, contact, and pre-contact) [13, 16]. The fundamental approach for

positioning (developed by Spinelli) was to use differential GPS (DGPS) between the

two aircraft. Using a wireless datalink, the receiver used the tanker position as a local

truth reference, and through double-differencing, obtained its position relative to the

tanker at centimeter level accuracy [16].

Ross successfully created a flight controller that maintained relative position

optimized for 150 of bank, but capable of up to 300. The system under test was a

Calspan Learjet as the receiver aircraft with a C-12 aircraft as the surrogate tanker.

Figure 2.10 shows the two aircraft in formation during one of the flight tests. This

research successfully demonstrated that GPS is one valid approach for accurate rel-

ative positioning. Ross also noted that if an optical system could keep the receiver

aircraft within a five foot envelope of the nominal refueling position, the human boom

operator can correct the error and still successfully make contact with the refueling

boom [13].

2.10.2 Spencer Optical Tracking for Relative Positioning. Using feature

extraction, matching, and validation, Spencer aimed to determine relative position

between two aircraft using optical techniques. The fundamental feature extraction

technique was the Harris corner detector. For navigation, the system attempts to

find and propagate the most likely association feature to the next frame using a
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Figure 2.10: Image of Calspan Learjet and C-12 surrogate
tanker aircraft during Ross/Spinelli Formation Flight Test

traditional Kalman Filter. The system then tries to match a detected corner or edge

from the image with a predicted feature of the target [15].

The system used pose estimates from the inertial measurement unit (IMU)

coupled with the measurement update from the Kalman filter’s predictions of the

feature locations. The radial projection error (between projected features and actual

locations) was approximately five pixels for relative distance between 60-300 feet,

and approximately 8-12 pixels inside of 60 feet during Spencer’s flight tests. Due

to this error, a different type of feature extraction or image matching method could

potentially allow this approach to more accurately determine the relative position and

also be more computationally tractable [15].

2.10.3 Vision-Based Sensor and Navigation System. Another visual track-

ing system for refueling was developed, in concept, at Texas A&M University, called

the Vision-Based Sensor and Navigation System, or VizNav. The approach here is to

use the probe and drogue technique of inflight refueling, with several infra-red light

emitting diodes (LEDs) affixed to the drogue chute in a known orientation. When

the receiver aircraft approaches the drogue, the system aboard the receiver aircraft
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establishes a wireless datalink with the electronics mounted on the drogue. The sys-

tem then sends commands to the drogue electronics which then activate each LED

in a precise, pre-determined sequence. The optical sensor aboard the receiver air-

craft can detect and distinguish each LED and thus determine a relative distance and

orientation to the drogue [18].

Though a very interesting and seemingly robust approach, this system does de-

mand the ability to establish a reliable datalink between the aircraft and the drogue

system. A suitable corollary with boom refueling isn’t readily apparent, since with

the boom approach the receiver aircraft does not have a visual target (the drogue) to

intercept. Furthermore, this approach would require undesirable and costly modifica-

tions (installing LEDs) to the tanker fleet [18].

2.10.4 DARPA/NASA Dryden Probe and Drogue Refueling. The autonomous

aerial refueling system developed under a joint Defense Advanced Research Projects

Agency (DARPA) and National Aeronautics and Space Administration (NASA) test

at the NASA Dryden test facility involved GPS, vision, and inertial sensors to de-

termine relative position between a refueling drogue from a Boeing 707/300 and an

F/A-18 aircraft.

The system primarily calculated the position of the system using the combined

relative GPS and INS measurements. Once within visual reference (approximately 80-

120 ft), the vision system would track the drogue using an a priori model of the drogue

shape. The test established an autonomous, hands off, repeatable demonstration of

positive contact between the receiver aircraft and refueling receptacle [7].

2.10.5 Perugia University and West Virginia University. Perugia University

and West Virginia University have many research contributions in the autonomous

aerial refueling problem [4,5,14]. These efforts focus on comparing different machine

vision algorithms for feature detection on the lead tanker aircraft and how to develop

robust controllers for autonomously controlling the receiver aircraft in the formation.
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These vision-aided approaches all consider tracking specific features on the lead air-

craft, sometimes even using infrared optical markers in a known orientation on the

tanker. The simulations from Perugia and West Virginia Universities show favorable

results, but the research presented in this thesis seeks to avoid tracking specific fea-

tures of the tanker and/or rely on modifying the tanker fleet by installing optical

markers.

2.11 Summary

This chapter has highlighted key mathematical and navigation background that

will be necessary for thorough understanding of Chapter III. The EKF basic discussion

will be used to develop relative navigation filters that use INS sensors for propagation

and images as virtual measurement updates.

The related research presented in this chapter summarizes key work and suc-

cesses already accomplished to solve the autonomous aerial refueling problem. The

algorithm presented in the next chapter seeks to complement these efforts to obtain

a robust, image-aided navigation solution.
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III. Algorithm Development and Implementation

This chapter will describe the algorithm used to develop a vision-aided relative

navigation system. First, the dynamics model is developed for both aircraft in

the formation. Several image processing techniques are presented to determine the

accuracy of the rendering. Finally, the Extended Kalman Filter implementation is

discussed, including the algorithm to use images as the measurement update.

3.1 Modeling Aircraft Dynamics

Before constructing a filter to estimate the relative navigation solution, the

system dynamics must be accurately modeled. It is assumed that an INS is available

on the wing aircraft, so the wing dynamics are modeled based on the nonlinear INS

mechanization equations and associated statistical error model.

3.1.1 Wing Aircraft Dynamics. The model used in this research builds upon

the mechanization development presented in [19]. The accelerometer measurement

model is:

fW
m = fW + aW + wW

a (3.1)

Recall from section 2.3 that the L and W notation refers to the lead and wing body

frames, respectively. The measured specific forces in the wing frame (fW
m ) are the sum

of the true specific forces in the wing frame (fW ), the accelerometer biases (aW ), and

additive white Gaussian noise (wW
a ). The gyroscope measurement model is:

ωW
ibm

= ωW
ib + bW + wW

b (3.2)

The measured body rotation rates with respect to inertial space (ωW
ibm

) are the sum

of the true body rotation rates (ωW
ib ), the gyroscope biases (bW ), and additive white

Gaussian noise (wW
b ). The biases for both the accelerometers and the gyroscopes are

modeled as first-order Gauss-Markov processes:

ȧW = − 1

τa

aW + wW
abias

(3.3)
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ḃW = − 1

τb

bW + wW
bbias

(3.4)

The time constants for the accelerometer and gyroscope are represented by τa and τb,

respectively.

Fully developed in [19], the error-state model is presented in the following equa-

tions. First, the attitude error states are defined in terms of small angles about the

north, east, and down directions of the local navigation frame as:

ψ =




ψn

ψe

ψd


 (3.5)

The final attitude error equations (in vector form from [19]) are determined to be:

ψ̇ = −
[

(Cn
e ωe

ie)×
]
ψ −Cn

WbW −Cn
WwW

b (3.6)

The × symbol following a vector indicates the skew symmetric form. The velocity

and position error equations (in vector form from [19]) are determined to be:

δv̇n = Cn
eGCe

nδp
n − 2Cn

eΩ
e
ieC

e
nδvn + (fn×)ψ + Cn

b a
b + Cn

b w
b
a (3.7)

δṗn = δvn (3.8)

3.1.2 Lead Aircraft Dynamics. If assuming that the lead INS measurements

are available for the navigation solution, the dynamics are modeled using the same

error equations as presented above in the wing dynamics section. Since this research

will focus on a completely passive system, the INS measurements are not available

and the dynamics are modeled using a stochastic, kinematic motion model. With

the knowledge that the lead flight behavior will be relatively benign during a close-

proximity refueling maneuver, several of the states can be modeled as first-order

Gauss-Markov processes driven by WGN.
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The x velocity dynamics in the lead body frame are modeled as:

v̇L
x = − 1

τv

vL
x + wL

vx
(3.9)

The variables are tracked in the lead body frame in order to make the first-order

Gauss-Markov process a valid modeling tool. The y and z velocities in the lead body

frame should have very minute variations and each can simply be modeled by a WGN

source.

v̇L
y = wL

vy
(3.10)

v̇L
z = wL

vz
(3.11)

Similar to the x velocity, the roll (φL) and pitch (θL) state dynamics are also modeled

as first-order Gauss-Markov processes.

φ̇L = − 1

τφL

φL + wL
φL

(3.12)

θ̇L = − 1

τθL

θL + wL
θL

(3.13)

The time constants for the roll and pitch rates are τφL
and τθL

, respectively.

The heading (ψL) differential equation is a function of the amount of roll, the

gravity vector (g), and the x velocity as follows:

ψ̇L =
g tan φL

vxL

(3.14)

Now to convert to the error state form, mixed partial derivatives of each equa-

tion above are taken with respect to each of the state variables (commonly called

the Jacobian). The lead velocity error state variable dynamics (in vector form) are
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computed as:

δv̇L
L =




− 1
τvx

0 0

0 0 0

0 0 0


 δvL

L (3.15)

The lead position error state variable dynamics (in the navigation frame) are simply

a function of the velocity:

δṗn
L = Cn

LδvL
L (3.16)

The attitude error state variable dynamics are as follows:




δφ̇L

δθ̇L

δψ̇L


 =




0 0 0

0 0 0

−g tan φL

v2
xL

0 0


 δvL

L +




− 1
τφL

0 0

0 − 1
τθL

0

g
vxL

cos2 φL
0 0







δφL

δθL

δψL


 (3.17)

3.1.3 State-Space Model. With all of the error state differential equations

now written for the entire system, the overall state-space model can be formed. This

will be the nonlinear model used in the propagation step of the Kalman filter.

The error state vector, δx, consists of the position (δpn
W ), velocity (δvn

W ), atti-

tude (ψW ), accelerometer bias (δaW ), and gyroscope bias (δbW ) for the wing vehicle,

as well as the position (δpn
L), velocity (δvL

L), and attitude (ψL = [δφL, δθL, δψL]T )

for the lead vehicle. This yields a twenty-four element vector of the form:

δx =




δpn
W

δvn
W

ψW

δaW

δbW

δpn
L

δvL
L

ψL




24×1

(3.18)
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The noise term consists of the WGN sources that drive the accelerometer measurement

(wW
a ), the gyroscope measurement (wW

b ), the accelerometer bias (wW
abias

), and the

gyroscope bias (wW
bbias

) all for the wing aircraft, as well as the velocity noise (wL
vel),

and attitude noise (wL
att = [wφ, wθ, 0]T ) for the lead aircraft. These elements are

combined to form:

w =




wW
a

wW
b

wW
abias

wW
bbias

wL
vel

wL
att




18×1

(3.19)
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The overall, augmented state-space error model can then be written as follows:

δẋ =




03 I3 03 03 03 03 03 03

Cn
eGCe

n −2Cn
eΩ

e
ieC

e
n (fn×) Cn

W 03 03 03 03

03 03 −(Cn
e ω

e
ie)× 03 −Cn

W 03 03 03

03 03 03 − 1
τa

I3 03 03 03 03

03 03 03 03 − 1
τb
I3 03 03 03

03 03 03 03 03 03 Cn
LI3 03

03 03 03 03 03 03 F1 03

03 03 03 03 03 03 F2 F3




24×24

δx

+




03 03 03 03 03 03

Cn
W 03 03 03 03 03

03 −Cn
W 03 03 03 03

03 03 I3 03 03 03

03 03 03 I3 03 03

03 03 03 03 03 03

03 03 03 03 I3 03

03 03 03 01 03 G1




24×18

w

(3.20)

using the following substitutions:

F1 =




− 1
τvx

0 0

0 0 0

0 0 0


 ; F2 =




0 0 0

0 0 0

−g tan φL

v2
xL

0 0




F3 =




− 1
τφL

0 0

0 − 1
τθL

0

g
vxL

cos2 φL
0 0


 ; G1 =




1 0 0

0 1 0

0 0 0




(3.21)
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3.2 Image-Aided Filter Implementation

This section will highlight the key details of how the filter propagates and up-

dates during operation.

3.2.1 Extended Kalman Filter Propagation. As discussed in Section 2.2.2,

the Extended Kalman Filter propagates from one measurement update to the next

by linearizing the trajectory about the current, nominal state estimate. After a mea-

surement update is taken, the new state estimate is used to linearize the dynamics

presented in the previous section. This linear relationship is then propagated to the

next time epoch, to yield the a priori estimate. The filter is then ready to receive an

update based on the image captured from the digital camera.

3.2.2 Image Update. Section 2.8 considered three methods that determine

an error between the true image collected by the digital camera, and the predicted

image generated from the a priori state estimate. This error value is simply a nu-

meric number. It quantifies how well the two images match, but has no information

regarding which degrees of freedom have significant errors. Using only the error, one

can not readily deduce which direction(s) to move the optimal state estimate so that

it will yield a prediction that more closely matches the true image.

By perturbing the estimate (in all six degrees of freedom) about the nominal

and generating multiple images, the image update can determine in which direction(s)

the estimate differs from the truth. Before these perturbations are started, there must

be some metric to regulate how large the perturbations in each degree of freedom will

be. If the initial estimate is significantly wrong, then small perturbations might not

give the algorithm observability into the appropriate directions that will correct the

estimate. Also, if the a priori estimate is very accurate, then perturbations that are

very large will not provide observability into any very small error corrections that are

needed.
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The state error covariance matrix (Pxx) is used to determine how large the

perturbation values should be. States that have large uncertainty should obviously

have larger perturbations than those with smaller uncertainty. By taking the Cholesky

decomposition of this matrix, the perturbation values for each state can be found that

include any cross-coupling covariance effects between states. Matlabr has a built-in

function (chol()) to easily yield the Cholesky decomposition:

chol(Pxx)
T , c

√
Pxx (3.22)

Each degree of freedom is then perturbed about the nominal state estimate, using the

magnitudes found from the Cholesky decomposition. These magnitudes are applied

as both positive and negative values, so that the estimate is perturbed in all possible

directions. Mathematically, each perturbation state vector (x̂i) is a linear function of

each row of the Cholesky decomposition plus the nominal, a priori state estimate (x̂):

x̂i = c
√

Pxx

∣∣∣
i
+ x̂ (3.23)

After each individual perturbation generates a new predictive rendering, an image

is captured and compared with the nominal, a priori image. This yields an error

gradient in all directions about the nominal, serving as the observability function (or

measurement) of each perturbation:

ẑi = h[x̂i] (3.24)

Once every gradient is found (for both positive and negative perturbations), the values

are compared to find the direction that produces the gradient value that is the lowest

(i.e., most negative). In other words, moving the predicted image in this direction

results in the most error reduction of any of the perturbations. The state estimate

is adjusted by the amount of the best perturbation, and the process repeats. The

estimate is then perturbed about this new nominal value to again find the direction(s)
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that yields the greatest reduction in error. The algorithm tracks the translation and

rotation adjustments from the a priori estimate throughout the process.

As this process cycles, the predicted image should gradually and methodically

move so that it closely aligns with the true image from the digital camera. Once

the predicted and true images are closely aligned, then the normal perturbations

will not yield a direction in which the error will decrease. Moving the prediction in

any direction will only increase the error. At this point, the perturbation values are

reduced to a fraction (10%) of their original value, and the process above is repeated.

This is a method to fine tune the estimate and lock in the predicted image with the

true image as closely as possible.

After the fine tuned perturbations reach the point where any movement yields

an increase in error, then the prediction should be closely correlated with the true

image. This location is indeed a minimum, but it is potentially only a local minimum.

It is possible that the global minimum could be at a different position. Using the state

error covariance as the scale with which to perturb helps to mitigate this possibility.

If the covariance values are high, then the perturbations should be high enough to find

the global minimum. If the covariance is low, indicating the nominal estimate is near

the truth, then small perturbations should find the global minimum. The cumulative

translation and rotation adjustments from the a priori estimate to the closest match

yield the measured location and orientation of the lead aircraft.

As shown in Equations 2.13 and 2.18 (for both the traditional and Extended

Kalman Filters) a measurement uncertainty matrix, R, must be included as part of

the measurement update step. In order to find the uncertainty of the measurements

taken from the image perturbations, the shape of the error curves must be known.

Every error value is stored as the algorithm perturbs the estimate about the nominal

until finally locking on to the best matching image. These errors are recorded for

each degree of freedom, and sorted based on their relative perturbation value from

the nominal. To explain this concept graphically, consider Figure 3.1.

39



For each degree of freedom, the minimum error should occur where the pre-

dicted and true images are precisely aligned. Intuitively, any deviation from this

point should cause the error value to increase. The data should approximately align

with a parabolic function, with the errors increasing the further one perturbs from

the optimal value. This parabolic shape is approximated as a Gaussian distribution

that is negated. The variance (σ2) of this Gaussian distribution is the measurement

uncertainty for that particular degree of freedom. The R matrix is formed by placing

all six variances along its diagonal. The cross terms of the R matrix are assumed to

be zero since there is no direct correlation between uncertainties.

Figure 3.1: Example error distribution about the best image
match. The blue curve represents the typical behavior of a single
degree of freedom when perturbed about the location where the
true and predicted images best match. A negated Guassian
distribution is approximated based on the shape of this curve,
whose variance is used as the measurement uncertainty.
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3.3 Summary

This chapter has shown how the relative navigation solution is calculated using

an Extended Kalman Filter. The filter propagates the system dynamics over time

using INS mechanization for the wing aircraft and first order Gauss-Markov approx-

imations for the lead aircraft. Using a predictive rendering approach, an estimate of

the lead aircraft image as seen from the wing onboard camera is generated at the time

epochs where a measurement is taken. Through image processing and perturbation

techniques, the image update function determines the relative position and transla-

tion error between the predicted and true images. This serves as a measurement that

is fed back to the EKF, which updates the state estimate. The filter is then ready to

propagate forward again and iterate the process.

Based on this development, Chapter IV will present analysis of the various image

processing techniques discussed in this chapter, as well as multiple simulations to test

the relative navigation solution under various conditions.
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IV. Algorithm Simulation and Analysis

This chapter has two major focuses. The first portion analyzes the three im-

age processing techniques discussed earlier through numerous image processing

experiments. The second portion presents a performance analysis of the Extended

Kalman Filter (EKF) developed in Chapter III using simulated trajectories and im-

ages.

4.1 Analysis of Image Processing Techniques

This section presents an analysis of the three image processing techniques (sum-

squared difference, magnitude of gradient, and magnitude of gradient with threshold)

discussed in Chapter III. Simulations were run to determine the observability of trans-

lation and rotation errors between two given images using each comparison technique.

The results of these simulations will provide insight into how well each technique will

detect errors between the predicted and true images. All three techniques are analyzed

at the pre-contact and contact positions of the refueling formation, using infrared im-

ages from the Northrop Grumman test flights as truth images. The plots shown in

this section can be conceptually thought of as cost functions. The global minimum

should be the optimal prediction (i.e., the nominal estimate where the predicted image

exactly matches the truth image).

4.1.1 Sum-Squared Difference. Considering each degree of freedom for a

specific time epoch, the roll, pitch, and yaw are perturbed from −200 to 200 from

the nominal, and the x, y, and z body axes are perturbed from −40 feet to 40 feet

from the nominal position. These plots are shown in Figure 4.1. The values in the

plots are the sum-squared difference (or error) between a predicted image and the

truth image. One can see that the sum-squared difference approach shows a smooth

rise in the error as the perturbations deviate away from the nominal location (0 on

each plot’s horizontal axis). In certain degrees of freedom, the minimum error does

not precisely occur at zero. This is due to small discrepancies in the rendered model

dimensions compared to the images of the true tanker. For example, differences in
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Figure 4.1: (a) The predicted image is independently per-
turbed in roll, pitch, and yaw about the nominal pre-contact
position. The minimum error (using sum-squared difference)
should occur where the images are best correlated.
(b) The predicted image is independently perturbed in the x,
y, and z body axes about the nominal pre-contact position.
The minimum error (using sum-squared difference) should occur
where the images are best correlated.

apparent engine size between the rendered and true images can be observed at some

attitudes. A sample surface plot is shown in Figure 4.2. This particular plot shows

the relationship between both roll perturbation and body-frame longitudinal (x axis)

perturbation about the nominal estimate. Deviations from the nominal are observable

as the surface smoothly slopes to higher magnitudes of error the further the predicted

image moves from the nominal image.

The next mode presented shows the correlation between perturbations about the

x axis and perturbations about pitch (Figure 4.3). There is a definite observability

issue in this case, since the very large valley would make it difficult for the image

processing system to isolate the minimum error. One final mode at the pre-contact

position that shows observability issues is the z axis translation coupled with pitch,

which is shown in Figure 4.4. Again, the undulating valley through this surface will

cause difficulties in determining the true minimum.
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Figure 4.2: Example surface generated using sum-squared dif-
ference approach by perturbing both the translation on the x
axis and the amount of roll simultaneously at pre-contact posi-
tion.
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Figure 4.3: Poor observability example surface generated with
sum-squared difference approach by perturbing both the x axis
translation and amount of pitch simultaneously at pre-contact
position. The large valley makes observability of the optimal,
minimum location extremely difficult.
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Figure 4.4: Example surface generated with sum-squared dif-
ference approach by perturbing the z axis translation and the
amount of pitch simultaneously at pre-contact position. The val-
ley that also exists here makes the minimum difficult to locate.

The additional modes for the other coupled degrees of freedom demonstrate fa-

vorable behavior similar to the mode of Figure 4.2, showing good overall observability

of errors for this technique.

Now analyzing the contact position for the sum-squared difference approach, two

surfaces are presented showing modes of interest. The surface in Figure 4.5 shows the

same perturbation as Figure 4.2, with similar, smooth behavior. Figure 4.6 shows the

same perturbation as Figure 4.3, again showing poor observability since the majority

of the surface is very flat with no distinct minimum.

With this analysis of the sum-squared difference technique as a baseline, the

next section will consider the magnitude of gradient approach and analyze its potential

error detection capability.
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Figure 4.5: Example surface generated using sum-squared dif-
ference approach by perturbing both the translation on the x
axis and the amount of roll simultaneously at the contact posi-
tion.
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Figure 4.6: Example surface generated using sum-squared dif-
ference approach by perturbing both the translation on the x
axis and the amount of pitch simultaneously at the contact po-
sition.
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4.1.2 Magnitude of Gradient. This section will analyze the magnitude of

gradient comparison technique. Figure 4.7 shows similar plots as Figure 4.1. Here,

one notices that the error increases more rapidly than the sum-squared difference

technique as the perturbations vary from the nominal position. However, as one

perturbs farther and farther from the nominal, the error begins to oscillate rather

than smoothly increase.

Figure 4.8 shows a similar surface as seen in Figure 4.2, but compares magnitude

of gradient between the two images. Here, one sees that the error increases more

rapidly than the sum-squared difference method when the image deviates from the

nominal position. There is a distinct, minimum value indicating the nominal location.
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Figure 4.7: (a) The predicted image is independently per-
turbed in roll, pitch, and yaw about the nominal pre-contact
position. The minimum error (using magnitude of gradient)
should occur where the images are best correlated.
(b) The predicted image is independently perturbed in the x,
y, and z body axes about the nominal pre-contact position.
The minimum error (using magnitude of gradient) should oc-
cur where the images are best correlated.
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Figure 4.8: Example surface generated using magnitude of
gradient approach by perturbing both the x axis translation and
amount of roll simultaneously at the pre-contact position. The
sharp minimum indicates good observability.

Additional surfaces are shown in Figures 4.9-4.11. Each of these modes shows

numerous local minima, thus making the optimal position difficult to determine. With

multiple modes showing this type of behavior, the magnitude of gradient approach

alone would not be a robust enough technique for precise error detection.

48



−20

−10

0

10

20

−20

−10

0

10

20
0.9

0.95

1

1.05

1.1

x 10
5

Yaw Perturbation (deg)Y-Axis Perturbation (ft)

M
a
g
n
it
u
d
e

o
f
G

ra
d
ie

n
t

D
iff

er
en

ce

Figure 4.9: Example surface generated using magnitude of
gradient approach by perturbing both the y axis translation and
the amount of yaw simultaneously at the pre-contact position.
There are many local minima, indicating poor observability.
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Figure 4.10: Example surface generated using magnitude of
gradient by perturbing both y axis translation and the amount of
roll simultaneously at the pre-contact position. Again, multiple
minima cause observability problems.
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Figure 4.11: Example surface generated using magnitude of
gradient approach by perturbing both z axis translation and the
amount of pitch simultaneously at the pre-contact position. Os-
cillations throughout this mode cause minima across the surface
which cause difficulties in image correlation.

Now examining the magnitude of gradient technique while at the contact posi-

tion, Figure 4.12 shows rather poor observability to the errors, but there is a distinct

minimum at the nominal location. If the errors begin very near the optimal position,

this approach could find the correct minimum. Figure 4.13 mimics the behavior of

Figures 4.3 and 4.6, demonstrating that x axis translation error coupled with pitch

error proves to be difficult to detect.
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Figure 4.12: Example surface generated using magnitude of
gradient by perturbing both x axis translation and the amount
of roll simultaneously at the contact position. There is poor
observability across most of the surface.
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Figure 4.13: Example surface generated using magnitude of
gradient approach by perturbing both x axis perturbation and
the amount of pitch simultaneously at the contact position. Sim-
ilar to Figures 4.3 and 4.6, there is poor observability with this
mode, including a valley in the surface.
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4.1.3 Magnitude of Gradient with Threshold. This section will analyze

the magnitude of gradient with threshold comparison technique. Figure 4.14 shows

the results when a sample image was perturbed and compared to the truth image

using the gradient with threshold technique. One can see that the plots do not have

oscillations that are quite as severe as the standard gradient plots shown in Figure 4.7.

However, the oscillations are still present, causing local minima at values significantly

different from the nominal position. Furthermore, in certain degrees of freedom (such

as roll, pitch, and x axis perturbation), the minimum value is actually skewed by a

few degrees/feet.

An example surface generated from the magnitude of gradient with threshold

approach is shown in Figure 4.15. This particular surface is not quite as smooth as the

sum-squared difference plot of the same mode, but shows a sharper rise away from the

nominal position as perturbations are introduced. This surface also does not possess

a distinct minimum at the nominal image location, again causing a potential issue
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Figure 4.14: (a) The predicted image is independently per-
turbed in roll, pitch, and yaw about the nominal pre-contact
position. The minimum error (using magnitude of gradient with
threshold) should occur where the images are best correlated.
(b) The predicted image is independently perturbed in the x, y,
and z body axes about the nominal pre-contact position. The
minimum error (using magnitude of gradient with threshold)
should occur where the images are best correlated.
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Figure 4.15: Example surface generated using magnitude of
gradient with threshold approach by perturbing both the x axis
translation and the amount of roll simultaneously at the pre-
contact position. The multiple minima near (0,0) would make
the optimal location difficult to detect.

with observability. Furthermore, examining the mode of x axis perturbation with

simultaneous change in pitch, similar results appear as those from the sum-squared

difference technique. This surface is shown in Figure 4.16.

Finally, examining the magnitude of gradient with threshold while at the contact

position, the first mode presented for comparison is the x axis translation error coupled

with roll error. This surface is shown in Figure 4.17. Very similar to Figure 4.8, there

is a very distinct minimum that would easily be detected when near the optimal image

location. However, when the errors are larger, the undulations in the outer portions

of the surface would make error detection difficult. Furthermore, in Figure 4.18, the

x axis error coupled with pitch error is once again difficult to detect. Similar to

previous plots, the undulations and large valley could make the distinct minimum

difficult to detect.
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Figure 4.16: Example surface generated using magnitude of
gradient with threshold by perturbing the x axis translation and
amount of pitch simultaneously at the pre-contact position. The
valley that exists will hinder error detection.
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Figure 4.17: Example surface generated using magnitude of
gradient with threshold by perturbing the x axis translation and
amount of roll simultaneously at the contact position. There is
a distinct minimum when near the optimal location, but large
errors would fall on the oscillating outer portion of the surface.
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Figure 4.18: Example surface generated using magnitude of
gradient with threshold by perturbing both the x axis transla-
tion and amount of pitch simultaneously at the contact position.
Observability issues exist due to the oscillations and the valley.

4.1.4 Analysis. Although the magnitude of gradient technique generates a

distinct minimum in the surface of Figure 4.8, its observability is actually poor in

many of the other modes shown in Figures 4.9-4.11. Furthermore, if the predicted

image shows large errors (i.e., one or more translation or rotation degrees of freedom

are significantly different from the values in the true image), the magnitude of gradient

could struggle to identify the actual error. A short example will help illustrate this

point.

Considering the two surfaces presented in Figures 4.2 and 4.8, assume that the

system predicts a translation in the x axis that has an error of 20 feet. In the case of

the sum-squared difference correlation, if one perturbs the predicted value about this

point (i.e., considers points on the surface in the neighborhood of this prediction) and

compares errors between the new images and the truth image, a smaller error will

definitely be detected and the system can adjust its prediction so that it more closely

matches the true image. This process can be repeated until the prediction eventually
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moves in the neighborhood of close correlation (near the point (0,0) on the graph)

with the true image (as explained in the image update discussion of Section 3.2.2).

An observability issue could exist very near the nominal point, however, since this

region of the surface is rather flat and the error values vary quite slowly.

With the same conditions in the magnitude of gradient approach, small per-

turbations about this point on the surface will likely yield very similar results to the

predicted point. In other words, all of the points in the neighborhood of this predicted

point will yield similar errors. Thus, the system will have difficultly not only detecting

that the prediction is incorrect, but also determining which degree(s) of freedom to

correct. Considering the magnitude of gradient with threshold approach, the surface

shows similar behavior to the sum-squared difference surface, although the errors ap-

pear to increase more rapidly than in Figure 4.2. Although this attribute would help

with error detection, there is still ambiguity around the nominal point because this

portion of the surface contains multiple minima.

Based on the above reasoning, the most robust approach appears to be a com-

bination of the sum-squared differencing technique for coarse error detection, then

transitioning to the magnitude of gradient approach for fine tuning. The sum-squared

difference technique shows the fewest issues with detecting errors across the entire sur-

face. There are only two modes (x axis translation error coupled with pitch error and

z axis translation error coupled with pitch error) that show significant error detec-

tion issues. This is true for the receiver aircraft in both the contact and pre-contact

formation positions. Based on the surfaces generated in the three image processing

techniques, there is an evident observability issue with x axis and pitch.

Upon actually implementing the image update in simulations (to be discussed

in detail in the next section), the benefits of using this two-fold approach are negligi-

ble in some cases. Through experimentation, the standalone sum squared difference

approach performs almost identically to the approach where sum-squared difference

is used for coarse acquisition with a transition to magnitude of gradient for fine ad-
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justment. However, there are still potential observability issues with the mode of x

body-axis error coupled with pitch error, and using the magnitude of gradient during

fine acquisition did present an advantage. The sum-squared difference standalone

approach demonstrated some observability challenges in the simulations, which the

magnitude of gradient helped to mitigate to some extent. Specific examples of this

trend will be discussed in the next section.

4.2 Filter Analysis Using Generated Data

In order to validate the filter design and image update algorithm, several dif-

ferent scenarios are presented in this section. For each scenario, truth trajectories

are generated for both aircraft. For each wing trajectory, simulated inertial measure-

ments are generated for use in the inertial propagation portion of the filter. These

inertial measurements are corrupted with noise levels consistent with the grade of

the simulated inertial sensor. There are two grades of IMU modeled in the following

simulations: a navigation grade Honeywell H764-G, and a tactical grade Honeywell

HG-1700. The respective IMU specifications are shown in Table 4.1.

Additionally, based on the relative position and orientation between the two

aircraft along the trajectory, renderings are made of the tanker as it should appear

from a digital camera on the receiver aircraft. Recall that Figure 2.5 shows the typical

image taken by the wing aircraft at the pre-contact position, and Figure 2.7 shows

a corresponding rendering at the pre-contact position. To provide the image update

function with truth images, renderings are captured to simulate images from the wing

onboard camera. Each image is also corrupted with a small amount of translation

and orientation noise in order to cause very slight perturbations. Even in smooth

air, all aircraft in flight have small movements, so these small perturbations create

more realistic images. The specific details, results, and analysis for each scenario are

presented in the sections that follow.
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Table 4.1: IMU Performance Parameters
Parameter (Units) HG-1700 H764-G
Sampling interval (ms) 10.0 3.906

Gyro bias sigma (deg
hr

) 1.0 0.0015
Gyro bias time constant (hr) 1 1

Angular random walk ( deg√
hr

) 0.3 0.002

Gyro scalefactor sigma (PPM) 150 5
Accel bias sigma (m

s2 ) 0.0098 2.45e-4
Accel bias time constant (hr) 1 1

Velocity random walk (m/s√
hr

) 0.57 0.0143

Accel scalefactor sigma (PPM) 300 100

4.2.1 Simple Trajectory at Pre-contact Position. The first simulation con-

sidered the receiver aircraft at the pre-contact position, with both aircraft aligned in

straight-and-level flight. The filter is initialized with the true initial conditions. The

initial state error covariance values for this simulation are given in Table 4.2. The

position, velocity, and attitude initial uncertainties are the same for both aircraft.

The EKF is executed using the generated INS measurements for propagation

of the wing aircraft navigation state. At a 1 Hz rate, the a priori relative navigation

state is used to render the estimated position of the tanker, which is then compared to

the current truth image. Using the image update function described in Chapter III,

the a posteriori estimate is computed, and the filter propagates to the next image

update (1 second later). In each of the following scenarios, a certain formation position

and IMU grade is considered and simulated. A 30 iteration Monte Carlo analysis is

presented for each.

4.2.1.1 Navigation Grade IMU. As a baseline, the relative errors and

covariances are shown for the simulation of free inertial in Figure 4.19. In other

words, this represents the typical errors when only relying on the inertial sensors and

no measurement updates. The majority of the sample functions are closely aligned

with the mean.
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Table 4.2: Initial State Uncertainties for Simulations
Position Uncertainty (North, East, and Down) 52 (m)2

Velocity Uncertainty (North, East, and Down) 0.12 (m
s
)2

Roll (φ) and Pitch (θ) Uncertainty 12 (deg)2

Heading (ψ) Uncertainty 52 (deg)2

Now using the image update function, Figure 4.20 shows the error in the tanker

position with respect to the wing body frame and the standard deviation (±1σ) for the

ensemble. Therefore, this figure shows the difference between the estimated and true

position of the lead aircraft with respect to the wing body frame. Figure 4.21 displays

the position (estimated minus true) measurement residuals during the simulations.

Figure 4.22 displays the attitude (estimated minus true) measurement residuals during

the simulations.
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Figure 4.19: The mean relative position error (indicated by
the green line) for the Monte Carlo simulation using navigation
grade IMU and no image updates, expressed in the wing body
frame while at the pre-contact position. The sample functions
for the 30 iterations are indicated by the blue, dotted lines.
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Figure 4.20: Relative position error for the Monte Carlo sim-
ulation using navigation grade IMU, expressed in the wing body
frame while at the pre-contact position. The relative error sam-
ple functions are indicated by the blue, dotted lines. The solid
green line is the ensemble mean, and the red lines indicate the
ensemble standard deviation (mean ±1σ bounds).

The plots indicate the filter can successfully track the location of the tanker for

this simple trajectory. The mean y and z errors in the wing body frame remain under

one meter for the duration of the simulation, while the mean x errors remain under ap-

proximately two meters. The measurement residuals relative to the navigation frame

show similar results. Though the sample functions of Figure 4.21 show more variance

in the East and Down directions, the mean errors are always less than one meter.

This is consistent with the body frame errors presented in Figure 4.20. The attitude

residuals show favorable results, with the majority of mean residual values remaining

less than one degree. As demonstrated in the previous section, the image update has

some observability issues in the x axis. This is evident in this simulation since the

x axis errors are larger than the other axes.
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Figure 4.21: Position measurement residuals for the Monte
Carlo simulation using navigation grade IMU at the pre-contact
position. The sample functions are indicated by the blue, dotted
lines. The ensemble mean is indicated by the green line.
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Figure 4.22: Attitude measurement residuals for the Monte
Carlo simulation using navigation grade IMU at the pre-contact
position. The sample functions are indicated by the blue, dotted
lines. The ensemble mean is indicated by the green line.
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4.2.1.2 Tactical Grade IMU. As a performance comparison, another

Monte Carlo simulation of the same trajectory is presented using the tactical grade

IMU parameters. First, the free inertial simulation results are shown in Figure 4.23.

Secondly, the results for this simulation utilizing the image update are shown in

Figures 4.24-4.26.

These figures show similar performance to the navigation grade inertial sensors

in the y and z axes. The errors in the x body-frame are very consistent with those

in the navigation grade simulation. The measurement residuals are very similar in

behavior and magnitude between the tactical and navigation grade sensors. For this

particular simulation, either grade of sensor yields accurate relative positioning.
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Figure 4.23: The mean relative position error (indicated by
the green line) for the Monte Carlo simulation using tactical
grade IMU and no image updates, expressed in the wing body
frame while at the pre-contact position. The sample functions
for the 30 iterations are indicated by the blue, dotted lines.
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Figure 4.24: Relative position error for the Monte Carlo sim-
ulation using tactical grade IMU, expressed in the wing body
frame while at the pre-contact position. The relative error sam-
ple functions are indicated by the blue, dotted lines. The solid
green curve is the ensemble mean, and the red curves indicate
the ensemble standard deviation (mean ±1σ bounds).

4.2.2 Simple Trajectory at Pre-contact Position with Initial Condition Errors.

In order to test the filter’s capability to reject estimation errors, another simulation

analyzes significant errors in the initial conditions. In this simulation, the initial

position of the lead aircraft contains an intentional, random error of 5 meters (1σ) in

the East direction, as well as a roll error of 2o (1σ). This is a northward trajectory

(just as the previous simulation), so the position errors will appear in the y axis of the

wing body frame. Due to the intentional offset in East position and roll, the initial

covariance values for these states are increased to 52 (m)2 and 22 (deg)2, respectively.

The remaining initial conditions and covariance values are the same as described in

the previous simulation (Table 4.2). This 30 iteration Monte Carlo simulation uses a

navigation grade IMU. Figures 4.27-4.29 display the results of this simulation.
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Figure 4.25: Position measurement residuals for the Monte
Carlo simulation using tactical grade IMU at the pre-contact
position. The sample functions are indicated by the blue, dotted
lines. The ensemble mean is indicated by the green line.

0 10 20 30 40 50 60
−5

0

5

R
o
ll

(d
eg

)

0 10 20 30 40 50 60
−2

0

2

P
it
ch

(d
eg

)

0 10 20 30 40 50 60
−5

0

5

Y
a
w

(d
eg

)

Elapsed Time (s)

Figure 4.26: Attitude measurement residuals for the Monte
Carlo simulation using tactical grade IMU at the pre-contact
position. The sample functions are indicated by the blue, dotted
lines. The ensemble mean is indicated by the green line.
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Figure 4.27: Relative position error for the Monte Carlo simu-
lation, expressed in the wing body frame with intentional errors
in initial conditions. The relative error sample functions are
indicated by the blue, dotted lines. The solid green curve is
the ensemble mean, and the red curves indicate the ensemble
standard deviation (mean ±1σ bounds).

From these figures, the filter demonstrates its capability to recover from initial

error estimates. Within 10 seconds, the filter corrected for the y body error, and

the roll measurement residuals were near zero. Again, the largest relative position

errors are seen in the x axis due to the observability issues. After correcting the

initial error, the position residuals (Figure 4.28) are less than |1 m| and the attitude

residuals (Figure 4.29) never exceed |2o|. Overall, the error magnitudes are similar

to the simulation that was initialized with the true conditions. This is an important

feature of the filter’s robust operation, since the true initial navigation state will

seldom be known when executing a real operation.
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Figure 4.28: Position measurement residuals for the Monte
Carlo simulation with intentional errors in initial conditions.
The sample functions are indicated by the blue, dotted lines.
The ensemble mean is indicated by the green line.
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Figure 4.29: Attitude measurement residuals for the Monte
Carlo simulation with intentional errors in initial conditions.
The sample functions are indicated by the blue, dotted lines.
The ensemble mean is indicated by the green line.
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4.2.3 Simple Trajectory at the Contact Position. The next simulations

consider the receiver in the contact position. The filter is initialized with the true

initial conditions, as well as the state error covariance values from Table 4.2.

4.2.3.1 Navigation Grade IMU. The first simulation considers the

navigation grade IMU. Figures 4.30-4.32 display the results of this simulation. The

x axis errors in the wing body frame again show larger magnitudes than the y and z

axes. Recall from Figure 2.5 that only a portion of the lead aircraft is visible at the

contact position. The wing aircraft camera field of view can typically only capture

a portion of the fuselage and the wings just beyond the two inboard engines. This

narrow view of the tanker makes errors in x axis translation and pitch difficult to

detect.
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Figure 4.30: Relative position error for the Monte Carlo simu-
lation using navigation grade IMU, expressed in the wing body
frame while at the contact position. The relative error sam-
ple functions are indicated by the blue, dotted lines. The solid
green curve is the ensemble mean, and the red curves indicate
the ensemble standard deviation (mean ±1σ bounds).
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Figure 4.31: Position measurement residuals for the Monte
Carlo simulation using navigation grade IMU at the contact po-
sition. The sample functions are indicated by the blue, dotted
lines. The ensemble mean is indicated by the green line.
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Figure 4.32: Attitude measurement residuals for the simula-
tion using navigation grade IMU at the contact position. The
sample functions are indicated by the blue, dotted lines. The
ensemble mean is indicated by the green line.
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With the limited amount of the lead aircraft in the field of view, these errors

would be even more pronounced than in the pre-contact position. Examining the

measurement residuals, the magnitudes are very small during the first half of the

simulation, then begin to slightly increase in the latter half. This is consistent with

the relative position errors of Figure 4.30, where the error and covariance in the x body

axis suddenly increase. The most likely explanation is that a few of the trajectory

runs had a bad measurement update at this point in the simulation, consistent with

the decreased observability to the x axis errors.

4.2.3.2 Tactical Grade IMU. This same contact position trajectory is

simulated using a tactical grade IMU. The results are displayed in Figures 4.33-4.35.

Again, the results here are fairly similar to the previous tactical grade simulation.

The tactical grade IMU shows the largest magnitude of error in the x body axis, as

expected. The largest errors occur near the end of the simulation (after 50 seconds),

indicating that the lower grade inertial sensor does begin to affect performance over

time. Ultimately, either choice of sensor can yield a reasonably accurate relative

position solution for this simple trajectory, though the navigation grade provides a

small performance enhancement.
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Figure 4.33: Relative position error for the Monte Carlo sim-
ulation using a tactical grade IMU, expressed in the wing body
frame while at the contact position. The relative error sam-
ple functions are indicated by the blue, dotted lines. The solid
green curve is the ensemble mean, and the red curves indicate
the ensemble standard deviation (mean ±1σ bounds).

4.3 Summary

This chapter has highlighted the strengths and weaknesses of three image pro-

cessing techniques. Both the standalone sum-squared difference approach and the

approach coupling sum-squared difference with magnitude of gradient give reasonable

error detection performance in the simulations.

The simulated trajectories show the validity of using predictive rendering in an

image-aided EKF for relative positioning. Though not yet at a maturity level for

extremely precise (centimeter level) positioning, this research has demonstrated that

the vision-aided approach is a valuable tool for finding an accurate relative navigation

solution. Furthermore, this technique would be a robust addition to systems primarily

relying on GPS. More on this technique’s future maturation and recommendations

for continued research are presented in Chapter V.
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Figure 4.34: Position measurement residuals for the Monte
Carlo simulation of straight and level flight using a tactical grade
IMU at the contact position. The sample functions are indicated
by the blue, dotted lines. The ensemble mean is indicated by
the green line.
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Figure 4.35: Attitude measurement residuals for the Monte
Carlo simulation of straight and level flight using a tactical grade
IMU at the contact position. The sample functions are indicated
by the blue, dotted lines. The ensemble mean is indicated by
the green line.
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V. Conclusions and Recommendations

Based on the results from Chapter IV, this chapter will highlight the overall

conclusions from this research as well as recommendations for future research

related to this topic.

5.1 Research Conclusions

The image processing analysis verified that the predictive rendering approach

is valid for detecting errors between a predicted and true image. Though there are

several modes that show observability issues (in particular the mode that couples

errors in the x body frame with errors in pitch), the simulations demonstrated that the

image update can still adequately detect residual errors. The approach of first using

sum-squared difference for coarse error detection, then transitioning to magnitude of

gradient performed the best considering all image processing simulations.

Examining the simulation results, one can see that the system demonstrates

reasonably accurate relative positioning during the pre-contact positions. The mean

error in relative position is often less than two meters with the navigation grade IMU,

with a few x body frame errors exceeding this threshold. The mean y and z estimates

are nearly always within one meter of the true value. For the pre-contact position,

this level of accuracy is acceptable, since there is no physical contact between aircraft

and no danger of collision.

In the case of initial condition errors, the filter rapidly corrects these initial

errors and shows similar performance to the previous simulation. The mean x axis

errors are the largest in magnitude, and generally stay less than approximately two

meters.

Now examining the contact position, recall from Chapter II the previous research

conducted by Ross (Section 2.10.1). He noted that an optical system would need

to maintain accuracy to within five feet of the nominal position, thus allowing the

boom operator to correct the residual error. Therefore, an accuracy threshold of

approximately 1.5 meters is appropriate. The simulations for both the navigation
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and tactical grade inertial sensors exceeded this threshold (the mean error deviating

to as much as four meters). The current navigation solution alone would not provide

accurate enough positioning at the contact position to yield satisfactory and safe

operation. Additional refinement is needed to fine tune the accuracy to one meter or

better.

5.2 Recommendations for Future Research

5.2.1 Additional Sensor Analysis. This research used predictive rendering

to generate a measurement update during simple trajectory simulations. Consider-

ing the pre-contact and contact positions, both navigation and tactical grade inertial

sensors were simulated through various trajectories. These simulations were designed

to be completely passive for the operation of the tanker. In other words, the system

under test did not rely on any modifications to the tanker aircraft (such as datalink

capability or optical markers). Though providing the baseline validation of the pre-

dictive rendering approach with a completely passive system, there is more research

to investigate with this technique.

Additional sensor parameters (including ranging sensors, datalink between air-

craft, and dual GPS updates) should be analyzed to completely characterize the au-

tonomous refueling problem. The use of a datalink providing inertial or GPS position

updates would definitely be worth investigating, though this would require tanker fleet

modifications. Furthermore, including a ranging sensor on the receiver aircraft could

provide additional information to complement the image update function and make

it more accurate. An overall sensitivity analysis is needed to truly characterize the

most robust, fault-tolerant image-aided system. Also, turning trajectories are typical

in aerial refueling maneuvers and should be analyzed using this technique.

5.2.2 Modification for Real-Time Operation. The Matlabr simulation using

VRML to render the images is a valid, yet time-consuming approach. There is a

definite delay between commanding the rendering parameters and the VR window
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actually displaying the rendering, even noticeable to the human eye. In order to

mitigate this, other rendering methods should be explored. Specifically, directly using

the graphics processing unit to render would likely be the optimal approach to achieve

high enough frame rates to render and process many images every second.

This research used an EKF, which generates only one navigation state estimate.

Thus, perturbations about this state estimate were needed to determine the residual

errors between the predicted and measured relative position and orientation. Ren-

dering each of these perturbations and iteratively adjusting the prediction to find the

closest matching image was a lengthy, time-consuming process. For real-time opera-

tion, this approach would not be practical. To enhance the speed of the image update,

an Unscented Kalman Filter (UKF) should be implemented. With a UKF, a large

number of sigma points would be generated instead of a single state estimate. With

each sigma point as a prediction (and thus predicted image), the image update could

develop some type of hypersurface to characterize how the errors vary with the sigma

point spread. Based on this distribution of error values, the update function could

determine where the minimum error, and thus optimal state estimate, occurs. The

function would still be generating a large number of rendered images, but would not

be performing the time-consuming perturbation process. This would allow the image

update to capture a truth image from the digital camera, compare the sigma point

predictions against the truth, determine the nominal estimate, and pass the nominal

back to the filter for propagation to the next measurement. All of this must occur

quickly enough to capture truth images from the digital camera at a 1 Hz or possibly

2 Hz rate.

Finally, with a filter and image update configuration that can operate in real-

time, a controller is needed to correct the receiver aircraft position based on the

navigation state estimate. This could be a simple regulator that drives the error

state to zero, thus keeping the receiver aircraft at the nominal pre-contact or contact

position, as appropriate.
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